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In this work, a transient inverse problem of transpiration cooling is investigated in detail. The heat flux on
the wall to be cooled is estimated by single point temperature measurement. The local thermal non-equi-
librium (LTNE) model is utilized to describe the energy conservation of transpiration cooling process, and
the conjugate gradient method (CGM) is extended to solve the inverse problem. The accuracy of the solu-
tions of the inverse problem is examined through three given heat fluxes with given measurement errors.
The examination shows that with the LTNE model and CGM, satisfactory solutions can be obtained. The
influences of the variation in thermal properties, compressibility and the location of sensor on the accu-
racy of the solutions are analyzed. The analysis indicates that the variation in thermal properties and
compressibility should be considered when a large temperature gradient exists, and the sensor location
should be as close as possible to the hot wall. The inverse solutions obtained by the measurements of
solid and fluid temperatures are compared. Through the comparison, it is found that using the solid tem-
perature measurement as the input of the inverse problem is better than using the fluid temperature
measurement.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Transpiration cooling has been proven as an effective mecha-
nism of heat dissipation by a lot of investigators. In most numer-
ical investigations on transpiration cooling, the heat flux on the
hot wall was a given value as one of boundary conditions. For
example, Landis and Bowman [1] studied transpiration cooling
performance of rocket nozzle, Wang et al. [2,3] analyzed the
parameters to control ablation with transient transpiration
cooling, Greuel et al. [4] discussed the transpiration cooling for
protecting cryogenic liquid rocket engine, Wolfersdorf [5] stud-
ied the effect of coolant side heat transfer on transpiration cool-
ing, these works were all limited in a given heat flux on the hot
wall to be thermal protected. To apply these foregone investiga-
tions, it is necessary to find an effective approach to determine
the heat flux on the hot boundary. Glass et al. [6] analyzed
numerically the convection and transpiration cooling effect on
the surface of a high temperature combustor, and solved the
heat flux using a boundary layer code and a finite difference
code of porous media. Haeseler et al. [7] investigated transpira-
tion cooled hydrogen–oxygen subscale chamber through
experiments and computations, in order to establish the heat
flux profile over the chamber, they measured the average
ll rights reserved.
pressures and temperatures at the inlet and outlet of the cham-
ber under static condition. However, in a practical transpiration
cooling process, the heat flux is dependent on time, space, oper-
ation-state and coolant injection conditions, thus this is a tran-
sient inverse problem of enhanced heat exchange.

The inverse problems of heat transfer have been discussed by
temperature measurements for a long time. Huang and Huang
[8] determined simultaneously the spatial-dependent effective
thermal conductivity and volumetric heat capacity of a biological
tissue based on temperature measurements. Hong and Baek [9]
estimated the unsteady inlet temperature distribution of the
two-phase laminar flow in a channel by downstream tempera-
ture measurements. Huang [10] calculated the spatial-dependent
wall heat flux of the laminar flow in a parallel plate duct
through temperature measurements. Li and Yan [11] solved an
inverse problem of the unsteady convection in an annular duct,
and used temperature data to determine the time and space-
dependent heat flux distribution on the inner wall of the duct.
Chen et al. [12] calculated the time and space-dependent heat
transfer rate on the external wall of a pipe system with temper-
ature measurements. Lin et al. [13] investigated the heat flux of
the unsteady laminar forced convection in parallel plate channels
by temperature measurements. In recent years, some new meth-
ods were utilized to solve the inverse problems. Li and Yang [14]
used the genetic algorithm (GA) for estimating the scattering al-
bedo, optical thickness and phase function in parallel plane. Kim
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Nomenclature

y,Y coordinate
m coolant mass flow rate, kg/m2 s
M dimensionless coolant mass flow rate
Vf dimensionless velocity
Q dimensionless heat flux
q heat flux at hot surface, W/m2

h interfacial convective coefficient, W/m2 K
K permeability, m2

p pressure, Pa
asf specific surface area, m�1

c specific heat capacity, J/kg K
T temperature, K
k thermal conductivity, W/m K
H thickness of entire structure, m
t time, s
hsf volumetric convective coefficient, W/m2 K
vf velocity, m/s
Bi Biot number
Ma Mach number

Re Reynolds number
St Stanton number

Greek symbols
e porosity
q density, kg/m3

s dimensionless time
l viscosity, N/s m2

h dimensionless temperature

Subscripts
0 initial
a ablation
c coolant reservoir
e effective
f fluid
i measurement times
ref reference
s solid

Fig. 1. Model of transpiration cooling.
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et al. [15] estimated wall emissivities with the hybrid genetic
algorithm (HGA). Lee et al. [16] used the repulsive particle
swarm optimization (PSO) for estimating the unknown radiative
parameters. Park and Lee [17] utilized the Karhunen–Loeve
Galerkin procedure to determine the space-dependent wall heat
flux of the laminar flow inside a duct from the temperature
measurements within the flow.

As mentioned above, these investigations were not aimed at the
heat transfer within porous media or transpiration cooling, and in
the references of [9–13], the assumptions of constant thermal
properties and incompressible fluid were used. Therefore, it is nec-
essary to consider whether these assumptions are suitable for tran-
spiration cooling inverse problem. The inverse problem of the hot
boundary is an important topic in the investigation on transpira-
tion cooling, and the solving method of this problem is also differ-
ent from that of the generally inverse problem as mentioned above
[8–17], because transpiration cooling concerns two coupled energy
balance equations for flowing fluid and solid matrix, respectively.
This paper presents an approach to solve the inverse problem using
real-time temperature measurements. The aim is to provide the
investigators with a relatively comprehensive reference to under-
stand the hot boundary performance of transpiration cooling
process.

2. Physical model and mathematical equations

The physical model used in this work is sketched in Fig. 1.
There is a porous matrix with a thickness of H, its one side is
exposed to a severe heat flux of q(t). To protect the matrix from
the heat flux, a fluid coolant at a reservoir temperature of Tc is
injected into the porous matrix with a mass flow rate of m. In
this work, the Darcy law is used as the momentum equation
of the coolant. For accurate estimation of the heat flux, the heat
exchange between the coolant and matrix within pores is con-
sidered in this work, and the LTNE model is utilized [1–6]. Since
the effective thermal conductivity ratio of the matrix to the fluid
(ks,e/kf,e) is usually very large in transpiration cooling problems,
the thermal diffusion of the coolant within the porous matrix
can be neglected [2,5]. This physical model can be described
by the following mathematical equations:
Continuity equation : e
@qf

@t
þ @

@y
ðqf mf Þ ¼ 0 ð1Þ

Momentum equation : mf ¼ �
K
l
@p
@y

ð2Þ

Fluid energy equation : ðqcÞf ;e
@Tf

@t
þ ðqcmÞf

@Tf

@y
¼ hsf asf ðTs � Tf Þ ð3Þ

Solid energy equation : ðqcÞs;e
@Ts

@t
¼ @

@y
ks;e

@Ts

@y

� �
� hsf asf ðTs � Tf Þ

ð4Þ

Here, ks,e is the effective thermal conductivity of the solid matrix,
(qc)s,e and (qc)f,e are the effective thermal capacity of the solid ma-
trix and coolant fluid, respectively, they can be calculated by the
porosity e of the matrix:

ks;e ¼ ð1� eÞks ð5Þ
ðqcÞf ;e ¼ eðqcÞf ð6Þ
ðqcÞs;e ¼ ð1� eÞðqcÞs ð7Þ

The coolant fluid is assumed as perfect gas in this paper, and its
density can be calculated as the following equation:

p ¼ qf RTf ð8Þ
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At the initial time, the entire matrix is at the same temperature and
pressure.

Ts ¼ Tf ¼ T0

p ¼ p0

�
t ¼ 0; y 2 ½0;H� ð9Þ

On the cold side of the matrix, the boundary conditions suggested
by [3,5] are used as:

hðT � TcÞ ¼ ks;e
@T
@y

hðTs � TcÞ ¼ mcf ðTf � TcÞ
ð10Þ

On the hot side of the matrix, the boundary condition suggested by
[2–3,5] is used as:

ke;s
@T
@y

����
y¼H

¼ q; t > 0; y ¼ H ð11Þ

To close this problem, the mass conservation law is applied as:

m ¼ qf mf ¼ const ð12Þ

Introducing the following dimensionless variables:

Y ¼ y
H
; h ¼ T � Tc

Tref
; �qf ¼

qf

qf ;ref
; P ¼ p

pref
; Vf ¼

mf

mf ;ref
ð13Þ

s ¼ t

H2ðqcÞs;ref =ks;ref

; M ¼ Hmcf ;ref

ekf ;ref
; Q ¼ qH

ð1� eÞks;ref Tref
ð14Þ

Bi ¼ hsf asf H
2

ð1� eÞks;ref
; St ¼ hc

ðqvcÞf ;ref
; Re ¼ Kmf

Hl
; Ma ¼ v f ;refffiffiffiffiffiffiffiffiffiffiffiffiffi

cRTref

p ð15Þ

pref ¼ pout; Tref ¼ Ta � Tc; qf ;ref ¼ pref =RTref ; mf ;ref ¼ mf =qf ;ref

ð16Þ

Here, Tc is the coolant temperature in the reservoir, and Ta is the so-
lid ablation temperature which is also allowable maximal tempera-
ture of the porous matrix. Thus, the dimensionless temperatures of
the solid and fluid are within 0 and 1 limited. All of the initial ther-
mal properties are taken at the initial temperature T0. Using these
dimensionless variables, the governing equations, initial and
boundary conditions can be rewritten as the following dimension-
less forms:

@�qf

@s
þM

kf ;ref

ks;ref

@

@Y
ð�qf Vf Þ ¼ 0 ð17Þ

Vf ¼ �
1

cðMaÞ2
Re
@P
@Y

ð18Þ

@hf

@s
þ Vf M

ðk=qcÞf ;ref

ðk=qcÞs;ref

@hf

@Y
¼ Bi

ðqcÞs;e;ref

ðqcÞf ;e
ðhs � hf Þ ð19Þ

@hs

@s
¼
ðqcÞs;ref

ðqcÞs
@

@Y
ks

ks;ref

@hs

@Y

� �
� Bi

ðqcÞs;ref

ðqcÞs
ðhs � hf Þ ð20Þ

P ¼ �qf hf þ
Tc

Ta � Tc

� �
ð21Þ

s ¼ 0; Y 2 ½0;1� hs ¼ hf ¼ h0; P ¼ P0 ð22Þ

s > 0; Y ¼ 0

hf ¼ Sths

StM kf ;e;ref

ks;e
hs ¼ @hs

@Y

�qf Vf ¼ 1

8><
>: ð23Þ
s > 0; Y ¼ 1
ks

ks;ref

@hs
@Y ¼ Q

P ¼ 1

(
ð24Þ

The direct problem (17)–(20) can be solved by the finite differ-
ence method on stagger mesh. It must be noted that when the
thermal properties of coolant fluid and porous solid, such as ther-
mal conductivity and capacity, are variable and temperature
dependent, or the coolant fluid is compressible, the coefficients
in non-linear equations (17)–(20) and boundary conditions (23)
and (24) should be renewed in each iterative step.

3. Conjugate gradient method and numerical process

In the direct problem, the variations in the fluid and solid tem-
peratures are calculated with certain initial and boundary condi-
tions, and the heat flux on the hot surface is given as a boundary
condition. In this inverse problem, the heat flux on the hot side
Q(s) is to be calculated by the temperature measurements. The
solutions of the surface heat flux is approached by minimizing
the object function as below:

J ¼
XN

i¼1

ðhi � ZiÞ2 ð25Þ

Here, hi(Y) is the dimensionless temperature obtained by calcula-
tion with an estimated Q(s), Zi(Y) is the dimensionless temperature
measured by a thermal sensor, N is the total number of measure-
ment times in a given period of time. If Y = 0, the sensor measure-
ment is at the cold side of the matrix. If Y = 1, the
sensor measurement is at the hot side of the matrix. If 0 < Y < 1,
the sensor measurement is within the porous matrix.

The inverse problem is in an ill-posed, the estimated heat flux is
very sensitive to the measurement errors, and the solution might
not unique. However there are many applications of inverse prob-
lem in engineering. To obtain a stable solution, different mathe-
matic methods, conjugate gradient method (CGM) [9–13], genetic
algorithm (GA) [14,15], particle swarm optimization (PSO) [16]
and Karhunen–Loeve Galerkin procedure (KLGP) [17] have been
tried. In this work, the CGM is applied, because the CGM has a
characteristic of quick convergence [12,16]. The heat flux is
approximated by the following iterative process:

Qpþ1
n ¼ Q p

n � bpdp
n ð26Þ

Here, p is the number of iteration time, bp and dp
n is step size and

descent direction, and can be calculated by

dp
n ¼

@J
@Qn

� �p

þ cpdp�1
n ð27Þ

bp ¼
PN

i¼1 ðh
p
i � ZiÞ

PN
n¼1

@hi
@Qn

� �p
dp

n

h i
PN

i¼1

PN
n¼1

@hi
@Qn

� �p
dp

n

h i2 ð28Þ

In Eq. (27), cp is a conjugate coefficient, and can be determined by

cp ¼
PN

n¼1
@J
@Qn

� �ph i2

PN
n¼1

@J
@Qn

� �p�1
	 
2 c0 ¼ 0 ð29Þ

The gradient of the object function is calculated with Eq. (25):

@J
@Q n

¼ 2
XN

i¼1

ðhi � ZiÞ
@hi

@Q n
ð30Þ

Here, ohi/oQn is the sensitivity coefficient which can be calculated
through the energy equations (19) and (20). Considering variation



Fig. 2. Computational procedure of CGM for the inverse problem of transpiration
cooling.
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in the thermal properties with the temperature, the sensitivity coef-
ficient equations and boundary conditions can be expressed as:

@ðqcÞf ;e
ðqcÞf ;e@hf

@hf

@Q n

@hf

@s
þ @

@s
@hf

@Q n

� �
þ Vf M

ðk=qcÞf ;ref

ðk=qcÞs;ref

@ðqcÞf ;e
ðqcÞf ;e@hf

� @hf

@Qn

@hf

@Y
þ Vf M

ðk=qcÞf ;ref

ðk=qcÞs;ref

@

@Y
@hf

@Q n

� �

¼ Bi
ðqcÞs;e;ref

ðqcÞf ;e
@hs

@Q n
� @hf

@Q n

� �
ð31Þ

@ðqcÞs
ðqcÞs@hs

@hs

@Q n

@hs

@s
þ @

@s
@hs

@Q n

� �

¼
ðqcÞs;ref

ðqcÞs
@

@Y
1

ks;ref

@ks

@hs

@hs

@Q n

@hs

@Y
þ ks

@

@Y
@hs

@Qn

� �� �� �

� Bi
ðqcÞs;ref

ðqcÞs
@hs

@Q n
� @hf

@Q n

� �
ð32Þ

@hs

@Q n
¼ @hf

@Qn
¼ 0 s ¼ 0; Y 2 ½0;1� ð33Þ

StM kf ;e;ref

ks;e

@hs
@Qn

� �
¼ @ks;e

ks;e@hs

@hs
@Qm;n

@hs
@Y þ @

@Y
@hs

@Qm;n

� �
@hf

@Qn
¼ St @hs

@Qn

8<
: s > 0; Y ¼ 0 ð34Þ

1
ks;ref

ks
@

@Y
@hs

@Q m;n

� �
þ @ks

@hs

@hs

@Q m;n

@hs

@Y

� �
¼ ûðs� snÞ s > 0; Y ¼ 1

ð35Þ

Here,

ûðs� snÞ ¼
1 if s ¼ sn

0 otherwise:

�

When the thermal properties are independent of the tempera-
tures, the values of @ðqcÞf ;e

@hf
;
@ðqcÞs
@hs

; @ks
@hs

and @ks;e
@hs

would be zero, Eqs.
(31) and (32) can be solved by the same approach referred to direct
problem (19) and (20) previously.

When the thermal properties are temperature dependent or the
fluid is compressible, non-linear equations (31) and (32) are more
complicated than Eqs. (19) and (20), because the coefficients in the
equations and boundary conditions will vary with measure time,
the values of Vf,

@hi
@s and @hi

@Y (i = s, f) have been known in previous cal-
culation step, and the values of @ðqcÞf ;e

@hf
; @ks
@hs

and @ks;e
@hs

have to be re-
newed in each iterative step. The non-linear equations are
numerically solved with the finite difference approach, and the
sensitivity @h

@Qn
is renewed in each measurement time step.

If there is no any measurement errors in the inverse problem,
the iteration stopping criterion is J < r, and in this paper r is
10�5. If there is a random error with a standard deviation of g in
the measurement data, the stopping criterion is modified as:

J < Ng2 ð36Þ

The computational procedure for the inverse problem of tran-
spiration cooling can be expressed with the following steps:

Step 1. Using a guess heat flux Q0
n ¼ 0, solving Eqs. (17)–(20), to

obtain the temperature field hi by the method of direct problem.
Step 2. Calculating the objective function J through Eq. (25), if
the stopping criterion is satisfied, the iteration procedure is ter-
minated, otherwise goes to step 3.
Step 3. Solving sensitivity equations (31) and (32), to obtain the
sensitivity coefficient @hi

@Qn

Step 4. Using @hi
@Q n

, hi,j and Zi,j, to calculate @J
@Qn

with Eq. (30), cp with
Eq. (29), dp

n with Eq. (27) and bp with Eq. (28).
Step 5. Using dp
n and bp, to calculate Qpþ1

n by Eq. (17), setting
p = p + 1 and going to step 2 (Fig. 2).

4. Results and discussion

To estimate the accuracy of the presented approach, the follow-
ing three kinds of heat flux functions are used as the given hot
boundary condition:

G1 QðsÞ ¼ 20abs sin
ps

0:18

� �� �
s 2 ½0; 0:36� ð37Þ

G2 QðsÞ ¼ 10þ 10 cos
ps

0:18

� �
s 2 ½0;0:36� ð38Þ

G3
QðsÞ ¼ 20ð0:36� sÞ 0 6 s 6 0:18
QðsÞ ¼ 20s 0:18 < s 6 0:36

�
ð39Þ

To consider the variations in the thermal properties and compress-
ibility, the following fitting relations are used:

ks ðW=m KÞ ¼ 7:86þ1:73�10�2T �1:50�10�5T2þ9:14�10�9T3

ð40Þ

kf ðW=m KÞ ¼ 5:49� 10�2 ð41Þ

cps ðJ=kg KÞ ¼ 422:69þ 0:26T � 3:22� 10�4T2 þ 1:92� 10�7T3

ð42Þ

cpf ðJ=kg KÞ ¼ 1029:18� 0:23T þ 5:86� 10�4T2 � 2:45� 10�7T3

ð43Þ

The other parameters are taken as below:

qs ðkg=m3Þ ¼ 7860; Ta ðKÞ ¼ 1250; Tc ðKÞ ¼ T0 ðKÞ ¼ 293;
H ðmÞ ¼ 0:05 ð44Þ

l ðN s=m2Þ ¼ 1:0E� 5; K ðm2Þ ¼ 1:0E� 5;
pout ðPaÞ ¼ p0 ðPaÞ ¼ 1:0E5 ð45Þ

e ¼ 0:15; Bi ¼ 5:0E2; Stc ¼ 1; Pr ¼ 0:8; M ¼ 5:0E4 ð46Þ



0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
0

5

10

15

20

 given 1    given 2    given 3
 inverse 1  inverse 2  inverse 3

Q
(

)

Fig. 4. Inverse solutions with standard deviation 0.5% and N = 72.
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The measured temperature data Z are generated by adding ran-
dom errors to the exact temperature data h which are calculated
from the solutions of the given heat flux:

Z ¼ hþ gn

Here, g is a standard deviation, and n is a random variable within
�2.576 to 2.576 within 99% confidence bound.

In order to keep undisturbed flow field, in this paper, the ther-
mal sensors are assumed to be embedded within the porous solid,
and the measurement location is at the hot surface Y = 1. That
means hs,i and @hs;i

@Qn
are seen to be hi and @hi

@Qn
, respectively.

4.1. Validation of inverse solutions

Fig. 3 illustrates a comparison between the three given heat
fluxes G1, G2, G3 and the corresponding inverse solutions obtained
by g = 0. It is clear that the inverse solutions are in well agreement
with the given values.

Fig. 4 compares the three given heat fluxes with the inverse
solutions obtained by a standard deviation of 0.5%. It can be found
that although there is a measurement error, the inverse solutions
obtained by the CGM are satisfactory.

Through above two comparisons, the inverse method with CGM
in this paper can essentially be confirmed to be valid.

4.2. Effects of variable thermal properties and fluid compressibility

Fig. 5 shows the influences of the variation in thermal proper-
ties and coolant density on the inverse solutions. It can be found
that under the assumption of constant thermal properties, two
heat fluxes, one is of compressible fluid, and the other is of incom-
pressible fluid, are obviously lower than the given boundary condi-
tion G1. Whereas under the condition of variable thermal
properties, the inverse solutions obtained by the assumption of
incompressibility are higher than the G1. These results are reason-
able, because if the thermal conductivity and heat capacity are var-
iable, they would increase with the temperature, according to the
Eqs. (40)–(43), therefore, under the same heat flux, the solutions
of the direct problem with variable thermal properties can obtain
lower temperatures than that with constant thermal properties.
On the other hand, when the coolant fluid is compressible, the fluid
velocity within the porous matrix is larger than that in incom-
pressible case, under the same heat flux, more quantity of the heat
absorbed by the matrix can be transported by the coolant flow,
therefore the solutions of the direct problem with compressibility
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Fig. 3. Inverse solutions with three case heat flux formulation and no measure
errors.
can obtain lower temperature than that with incompressibility.
From these comparisons, it can be found that the variation in ther-
mal properties and fluid density should be considered in the
inverse problem of the transpiration cooling with large tempera-
ture gradients.

4.3. Effects of measurement times N

To analyze the influence of measurement times N on the solu-
tions, an absolute average error in the estimated heat flux is de-
fined as below:

ferr ¼
1
N

XN

i¼1

Q g
i � Q e

i

�� �� ð47Þ

Here, Qg
i is the given heat flux G1, Qe

i is the heat flux obtained by the
measured temperature with given standard deviations 0.5% and 1%,
and the total measurement times N are multiples of nine, 9 � k
(k = 1 . . . 16).

Fig. 6 illustrates the influence of the measurement times on the
inverse solutions. The absolute average errors decrease observably
with an increase in the measurement times from 9 to 63, but from
63 to 144, the changes in the absolute average errors are not signif-
icant, though some slightly fluctuations appear, these fluctuations
can be deemed to be caused by increased computational errors. It
is well known that the computational time and memory are also
increased with the measurement times. Considering this phenom-
enon, the following solutions are obtained by 72 measurement
times.
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4.4. Effects of measurement location

Fig. 7 illustrates the influence of measurement location Y on the
solutions of the inverse problem, when the standard deviation is at
0.5%. It is clear that a farther location away from the hot surface cor-
responds to a larger deviation from the given heat flux. This phenom-
enon can be explained by Fig. 8. The fluid and solid temperature
distributions within the matrix in Fig. 8 are obtained at a certain heat
flux of Q = 20. It can be observed that in the region from Y = 0 to 0.8,
the temperatures of the two phases are close to 0. Obviously, the
measurement temperature in the region from 0 to 0.8 can not be
used as the input of the inverse problems, because the temperatures
in this region are very close to coolant reservoir temperature, and not
sensitive to the heat flux at the hot surface. From 0.8 to 1, the temper-
atures of solid and fluid increase quickly, and in this region, the effect
of the boundary heat flux is stronger than that of the reservoir. There-
fore, the measurement location in the inverse problems should be as
close as possible to the hot surface.

4.5. Effects of solid and fluid temperature measurements

If the temperatures of coolant fluid and solid matrix can be
measured separately, which temperature as the input of the in-
verse problems is better? To answer this question, a numerical
comparison is performed. Under the given heat flux G1, the fluid
and solid temperatures on the hot surface can be obtained. If the
fluid and solid temperatures added by the same deviation of 0.5%
are used as the input of the inverse problems, two different heat
flux profiles can be obtained, as shown in Fig. 9. It is clear that
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Fig. 7. Inverse solutions with three sensor position and standard deviation 0.005.
the inverse solutions obtained by the solid temperature are more
close to the given value G1 at all. This phenomenon is reasonable,
in this paper and foregone investigations [2,5] the thermal conduc-
tivity of the solid is much larger than that of the fluid, the temper-
ature increase of the fluid depends mainly on the convective heat
transfer with the porous solid, therefore the solid temperature is
much more sensitive to the heat flux, as shown in Fig. 8. From this
phenomenon, one can obtain a conclusion: it is better using the so-
lid temperature as the input of the inverse problem than the fluid
temperature when the thermal conductivity of the solid is larger
than that of the fluid. In actual fact, considering the disturbance
of thermal sensors on the fluid flow field, the measurement of cool-
ant temperature is not recommended.

5. Conclusion

An inverse problem of transpiration cooling for estimating the
time-dependent heat flux has been numerically discussed in this
work. The local thermal non-equilibrium model and conjugate gra-
dient method are used to solve the inverse problem. Through this
investigation, the following conclusions can be drawn:

� The local thermal non-equilibrium model and conjugate gradi-
ent method, as an effective approach, can be applied to estimate
the heat flux on the hot surface to be protected by transpiration
cooling.

� In the inverse problem solutions of transpiration cooling, the
assumption of constant thermal conductivity and capacity will
lead to an underestimated heat flux, and incompressibility will
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Fig. 9. Inverse solutions with the measurement of different phase.
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lead to an overestimated heat flux. Therefore, the variations in
the thermal properties and fluid compressibility should be con-
sidered, especially in the transpiration cooling problems with a
large temperature gradient.

� As the input of the inverse problem, the solid temperature mea-
surement is better than the fluid temperature measurement
when the thermal conductivity of the solid is larger than that
of the fluid.

� The measurement location of the solid temperature should be as
close as possible to the hot surface.
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